cheesechaser.datapool.nhentai
This module provides data pool classes for managing and accessing NHentai manga and image data.
The module includes two main classes:
NHentaiImagesDataPool: A data pool for managing NHentai images.
NHentaiMangaDataPool: A data pool for managing NHentai manga data, including image associations.
These classes provide functionality for retrieving manga information, downloading images, and managing resources from a Hugging Face dataset repository.
NHentaiImagesDataPool
- class cheesechaser.datapool.nhentai.NHentaiImagesDataPool(revision: str = 'main')[source]
A data pool class for managing NHentai images.
This class extends the IncrementIDDataPool to provide specific functionality for handling NHentai image data.
- Parameters:
revision (str) – The revision of the data to use, defaults to ‘main’.
NHentaiMangaDataPool
- class cheesechaser.datapool.nhentai.NHentaiMangaDataPool(revision: str = 'main')[source]
A data pool class for managing NHentai manga data.
This class provides methods for retrieving manga information, downloading associated images, and managing manga resources.
- Parameters:
revision (str) – The revision of the data to use, defaults to ‘main’.
- __init__(revision: str = 'main')[source]
Initialize the NHentaiMangaDataPool.
- Parameters:
revision (str) – The revision of the data to use, defaults to ‘main’.
- classmethod manga_id_map(revision: str = 'main', local_files_prefer: bool = True)[source]
Get a mapping of manga IDs to their associated image IDs.
This method is cached for efficiency.
- Parameters:
revision (str) – The revision of the data to use, defaults to ‘main’.
local_files_prefer (bool) – Whether to prefer local files, defaults to True.
- Returns:
A dictionary mapping manga IDs to lists of image IDs.
- Return type:
dict
- classmethod manga_posts_table(revision: str = 'main', local_files_prefer: bool = True)[source]
Retrieve the manga posts table as a pandas DataFrame.
This method is cached for efficiency.
- Parameters:
revision (str) – The revision of the data to use, defaults to ‘main’.
local_files_prefer (bool) – Whether to prefer local files, defaults to True.
- Returns:
A pandas DataFrame containing manga post information.
- Return type:
pandas.DataFrame
- mock_resource(resource_id, resource_info) AbstractContextManager[Tuple[str, Any]] [source]
Create a mock resource for a given manga.
This method downloads the associated images for a manga and organizes them in a temporary directory.
- Parameters:
resource_id (int) – The ID of the manga resource.
resource_info (Any) – Additional information about the resource.
- Yield:
A tuple containing the path to the temporary directory with the images and the resource info.
- Return type:
Tuple[str, Any]
- Raises:
ResourceNotFoundError – If the specified manga resource is not found.